Molecular Biophysics faculty are drawn from the departments of Applied Physiology, Biology, Biomedical Engineering, Chemistry and Biochemistry, Mechanical Engineering, and Physics.

Ed Balog
Applied Physiology
Studies of intracellular ion channels known as ryanodine receptors (RyRs). These proteins are the primary efflux pathway for the release of calcium from the sarcoplasmic reticulum.
Bridgette Barry
Chemistry & Biochemistry Director, Molecular Biophysics Training Program
Biological electron transfer, membrane biophysics, DNS synthesis, peptide maquettes, vibrational spectroscopy, EPR spectroscopy, photosynthesis.
Jennifer Curtis
Investigation of the structure, mechanics and function of the pericellular coat and hyaluronan‐protein macromolecular assemblies; the mechanics of phagocytosis using biophysical and nanopatterning tools.
Robert M. Dickson
Chemistry & Biochemistry
Single molecule spectroscopy, fluorophore design and utilization in materials and biology, laser spectroscopy and dynamics, nanoparticle synthesis and photophysics, biolabeling, superresolution and high‐sensitivity optical microscopy.
Mostafa A. El-Sayed
Chemistry & Biochemistry
Nanoscience: synthesis and study of the properties of nanomaterial of different shapes, nanotechnology: potential use of nanoparticles in: a) nanomedicine: diagnostics and selective photothermal therapy of cancer, b) nanocatalysis: shape dependence in cage effects.
Christoph J. Fahrni
Chemistry & Biochemistry
Development and application of cation‐selective fluorescent probes for biophotonics. Study of metal‐ion distribution and subcellular localization in live cells by x‐ray fluorescence microscopy.
JC Gumbart
School of Physics Assistant Professor
Molecular dynamics simulations of membrane-protein insertion and function at both the inner and outer bacterial membranes, bacterial cell wall dynamics and growth, nascent-peptide-ribosome interactions.
(404) 385-0797
Rigoberto Hernandez
Chemistry & Biochemistry
Analytic and computational approaches in nonequilibrium statistical mechanics to understand the structure and dynamics within and between proteins.
Nicholas V. Hud
Chemistry & Biochemistry
Elucidation of the fundamental chemical and physical principles that govern nucleic acid assembly at multiple scales, from cation‐mediated RNA folding in the ribosome to the organization of DNA in viruses and bacterial cells.
Harold Kim
Physics, Biology
Quantitative understanding of transcription‐factor activated gene expression in eukaryotic cells with emphasis on the role of nucleosome position/energetics and threedimensional organization of the genome in gene regulation. Fluorescence microscopy of live cells and single molecules.
Raquel Lieberman
Chemistry & Biochemistry
Protein crystallography, enzymology, biophysics, chemical biology and in silico modeling to elucidate the structure, function and mechanism of enzymes that perform hydrolysis reactions in an unusual chemical environment within or at the surface of the lipid bilayer of a cell.
Nael McCarty
Emory School of Medicine, Biology, Chemistry and Biochemistry
Biophysical approaches to understand the structure, function, and regulation of plasma membrane ion channels and receptors.
Christine Payne
Chemistry & Biochemistry
Development and use of fluorescence microscopy to image intracellular dynamics. Specific systems of interest include the transport of extracellular cargo and nanoparticle‐cell interactions.
Amit R. Reddi
Chemistry & Biochemistry
Biophysical and biochemical characterization of cellular transition metal trafficking, metalloproteins and metalloproteomes, placing an emphasis on systems relevant to cancer, neurodegenerative disorders, and infectious diseases.
Ingeborg Schmidt-Krey
Biology, Chemistry & Biochemistry
Structure of eukaryotic membrane proteins and membrane protein complexes by electron crystallography.
C. David Sherrill
Chemistry & Biochemistry, Computational Science & Engineering
Quantum mechanical models of electronic structure used to obtain reliable binding energies and substituent effects for non‐covalent interactions in nucleic acids and between protein side‐chains.
Jeffrey Skolnick
Biology, Chemistry & Biochemistry, Computational Science & Engineering
Computational biology.
Todd Sulchek
Mechanical Engineering, Bioengineering
Bioengineering and microelectromechanical systems: atomic force microscopy, pathogen adhesion and endocytosis, cell biomechanics, single molecule biophysics, drug delivery and targeting, biosensors.
Roger Wartell
Biology, Physics
Mechanism of protein facilitated sRNA regulation of mRNA expression; assembly and stability of RNA structures
Loren D. Williams
Chemistry & Biochemistry
Experimental and informatic approaches to determining and characterizing nucleic acid structures, and the forces that govern the structures.
Cheng Zhu
Biomedical Engineering, Bioengineering
Biomechanics of cell adhesion and signaling molecules of the immune system and the vascular systems.